Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(48): 56150-56157, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38011316

RESUMEN

Tin monosulfide (SnS) is a two-dimensional layered semiconductor that exhibits in-plane ferroelectric order at very small thicknesses and is of interest in highly scaled devices. Here we report the epitaxial growth of SnS on hexagonal boron nitride (hBN) using a pulsed metal-organic chemical vapor deposition process. Lattice matching is observed between the SnS(100) and hBN{11̅0} planes, with no evidence of strain. Atomic force microscopy reveals superlubricity along the commensurate direction of the SnS/hBN interface, and first-principles calculations suggest that friction is controlled by the edges of the SnS islands, rather than interface interactions. Differential phase contrast imaging detects remnant polarization in SnS islands with domains that are not dictated by step-edges in the SnS. The growth of ferroelectric SnS on high quality hBN substrates is a promising step toward electrically switchable ferroelectric semiconducting devices.

3.
Nano Lett ; 23(14): 6284-6291, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37402180

RESUMEN

Selective area epitaxy is a promising approach to define nanowire networks for topological quantum computing. However, it is challenging to concurrently engineer nanowire morphology, for carrier confinement, and precision doping, to tune carrier density. We report a strategy to promote Si dopant incorporation and suppress dopant diffusion in remote doped InGaAs nanowires templated by GaAs nanomembrane networks. Growth of a dilute AlGaAs layer following doping of the GaAs nanomembrane induces incorporation of Si that otherwise segregates to the growth surface, enabling precise control of the spacing between the Si donors and the undoped InGaAs channel; a simple model captures the influence of Al on the Si incorporation rate. Finite element modeling confirms that a high electron density is produced in the channel.

4.
Nanotechnology ; 34(38)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37321202

RESUMEN

Control over the distribution of dopants in nanowires is essential for regulating their electronic properties, but perturbations in nanowire microstructure may affect doping. Conversely, dopants may be used to control nanowire microstructure including the generation of twinning superlattices (TSLs)-periodic arrays of twin planes. Here the spatial distribution of Be dopants in a GaAs nanowire with a TSL is investigated using atom probe tomography. Homogeneous dopant distributions in both the radial and axial directions are observed, indicating a decoupling of the dopant distribution from the nanowire microstructure. Although the dopant distribution is microscopically homogenous, radial distribution function analysis discovered that 1% of the Be atoms occur in substitutional-interstitial pairs. The pairing confirms theoretical predictions based on the low defect formation energy. These findings indicate that using dopants to engineer microstructure does not necessarily imply that the dopant distribution is non-uniform.


Asunto(s)
Arsenicales , Nanocables , Nanocables/química , Nanotecnología/métodos , Propiedades de Superficie , Arsenicales/química
5.
Proc Natl Acad Sci U S A ; 120(3): e2216672120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36630451

RESUMEN

Cost-effective fabrication of mechanically flexible low-power electronics is important for emerging applications including wearable electronics, artificial intelligence, and the Internet of Things. Here, solution-processed source-gated transistors (SGTs) with an unprecedented intrinsic gain of ~2,000, low saturation voltage of +0.8 ± 0.1 V, and a ~25.6 µW power consumption are realized using an indium oxide In2O3/In2O3:polyethylenimine (PEI) blend homojunction with Au contacts on Si/SiO2. Kelvin probe force microscopy confirms source-controlled operation of the SGT and reveals that PEI doping leads to more effective depletion of the reverse-biased Schottky contact source region. Furthermore, using a fluoride-doped AlOx gate dielectric, rigid (on a Si substrate) and flexible (on a polyimide substrate) SGTs were fabricated. These devices exhibit a low driving voltage of +2 V and power consumption of ~11.5 µW, yielding inverters with an outstanding voltage gain of >5,000. Furthermore, electrooculographic (EOG) signal monitoring can now be demonstrated using an SGT inverter, where a ~1.0 mV EOG signal is amplified to over 300 mV, indicating significant potential for applications in wearable medical sensing and human-computer interfacing.


Asunto(s)
Inteligencia Artificial , Conducción de Automóvil , Humanos , Dióxido de Silicio , Suministros de Energía Eléctrica , Óxidos , Polietileneimina
6.
ACS Nano ; 17(1): 575-586, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36573755

RESUMEN

Inks based on two-dimensional (2D) materials could be used to tune the properties of printed electronics while maintaining compatibility with scalable manufacturing processes. However, a very wide range of performances have been reported in printed thin-film transistors in which the 2D channel material exhibits considerable variation in microstructure. The lack of quantitative physics-based relationships between film microstructure and transistor performance limits the codesign of exfoliation, sorting, and printing processes to inefficient empirical approaches. To rationally guide the development of 2D inks and related processing, we report a gate-dependent resistor network model that establishes distinct microstructure-performance relationships created by near-edge and intersheet resistances in printed van der Waals thin-film transistors. The model is calibrated by analyzing electrical output characteristics of model transistors consisting of overlapping 2D nanosheets with varied thicknesses that are mechanically exfoliated and transferred. Kelvin probe force microscopy analysis on the model transistors leads to the discovery that the nanosheet edges, not the intersheet resistance, limit transport due to their impact on charge carrier depletion and scattering. Our model suggests that when transport in a 2D material network is limited by the near-edge resistance, the optimum nanosheet thickness is dictated by a trade-off between charged impurity screening and gate screening, and the film mobilities are more sensitive to variations in printed nanosheet density. Removal of edge states can enable the realization of higher mobilities with thinner nanosheets due to reduced junction resistances and reduced gate screening. Our analysis of the influence of nanosheet edges on the effective film mobility not only examines the prospects of extant exfoliation methods to achieve the optimum microstructure but also provides important perspectives on processes that are essential to maximizing printed film performance.

7.
ACS Nano ; 16(12): 20281-20293, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36378999

RESUMEN

InGaAs quantum wells embedded in GaAs nanowires can serve as compact near-infrared emitters for direct integration onto Si complementary metal oxide semiconductor technology. While the core-shell geometry in principle allows for a greater tuning of composition and emission, especially farther into the infrared, the practical limits of elastic strain accommodation in quantum wells on multifaceted nanowires have not been established. One barrier to progress is the difficulty of directly comparing the emission characteristics and the precise microstructure of a single nanowire. Here we report an approach to correlating quantum well morphology, strain, defects, and emission to understand the limits of elastic strain accommodation in nanowire quantum wells specific to their geometry. We realize full 3D Bragg coherent diffraction imaging (BCDI) of intact quantum wells on vertically oriented epitaxial nanowires, which enables direct correlation with single-nanowire photoluminescence. By growing In0.2Ga0.8As quantum wells of distinct thicknesses on different facets of the same nanowire, we identified the critical thickness at which defects are nucleated. A correlation with a traditional transmission electron microscopy analysis confirms that BCDI can image the extended structure of defects. Finite element simulations of electron and hole states explain the emission characteristics arising from strained and partially relaxed regions. This approach, imaging the 3D strain and microstructure of intact nanowire core-shell structures with application-relevant dimensions, can aid the development of predictive models that enable the design of new compact infrared emitters.

8.
Adv Mater ; 34(34): e2203772, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35788996

RESUMEN

Printed 2D materials, derived from solution-processed inks, offer scalable and cost-effective routes to mechanically flexible optoelectronics. With micrometer-scale control and broad processing latitude, aerosol-jet printing (AJP) is of particular interest for all-printed circuits and systems. Here, AJP is utilized to achieve ultrahigh-responsivity photodetectors consisting of well-aligned, percolating networks of semiconducting MoS2 nanosheets and graphene electrodes on flexible polyimide substrates. Ultrathin (≈1.2 nm thick) and high-aspect-ratio (≈1 µm lateral size) MoS2 nanosheets are obtained by electrochemical intercalation followed by megasonic atomization during AJP, which not only aerosolizes the inks but also further exfoliates the nanosheets. The incorporation of the high-boiling-point solvent terpineol into the MoS2 ink is critical for achieving a highly aligned and flat thin-film morphology following AJP as confirmed by grazing-incidence wide-angle X-ray scattering and atomic force microscopy. Following AJP, curing is achieved with photonic annealing, which yields quasi-ohmic contacts and photoactive channels with responsivities exceeding 103  A W-1 that outperform previously reported all-printed visible-light photodetectors by over three orders of magnitude. Megasonic exfoliation coupled with properly designed AJP ink formulations enables the superlative optoelectronic properties of ultrathin MoS2 nanosheets to be preserved and exploited for the scalable additive manufacturing of mechanically flexible optoelectronics.

9.
Nano Lett ; 21(23): 9838-9844, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34793679

RESUMEN

Photodetectors fabricated from low-dimensional materials such as quantum dots, nanowires, and two-dimensional materials show tremendous promise based on reports of very high responsivities. However, it is not generally appreciated that maximizing the internal gain may compromise the detector performance at low light levels, reducing its sensitivity. Here, we show that for most low-dimensional photodetectors with internal gain the sensitivity is determined by the junction capacitance. Thanks to their extremely small junction capacitances and reduced charge screening, low-dimensional materials and devices provide clear advantages over bulk semiconductors in the pursuit of high-sensitivity photodetectors. This mini-review describes and validates a method to estimate the capacitance from external photoresponse measurements, providing a straightforward approach to extract the device sensitivity and benchmark against physical limits. This improved physical understanding can guide the design of low-dimensional photodetectors to effectively leverage their unique advantage and achieve sensitivities that can exceed that of the best existing photodetectors.


Asunto(s)
Nanocables , Puntos Cuánticos , Semiconductores
10.
ACS Appl Electron Mater ; 2: 1273-1279, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33313511

RESUMEN

Layered transition metal dichalcogenides (TMDs) and other two-dimensional (2D) materials are promising candidates for enhancing the capabilities of complementary metal-oxide-semiconductor (CMOS) technology. Field-effect transistors (FETs) made with 2D materials often exhibit mobilities below their theoretical limit, and strategies such as encapsulation with dielectrics grown by atomic layer deposition (ALD) have been explored to tune carrier concentration and improve mobility. While molecular adsorbates are known to dope 2D materials and influence charge scattering mechanisms, it is not well understood how ALD reactants affect 2D transistors during growth, motivating in situ or operando studies. Here, we report electrical characterization of MoS2 and MoTe2 FETs during ALD of MoOx. The field effect mobility improves significantly within the first five cycles of ALD growth using Mo(NMe2)4 as the metal-organic precursor and H2O as the oxidant. Analyses of the in situ transconductance at the growth temperature and ex situ variable temperature transconductance measurements indicate that the majority of the mobility enhancement observed at the beginning of dielectric growth is due to screening of charged impurity scattering by the adlayer. Control experiments show that exposure to only H2O or O2 induces more modest and reversible electronic changes in MoTe2 FETs, indicating that negligible oxidation of the TMD takes place during the ALD process. Due to the strong influence of the first <2 nm of deposition, when the dielectric adlayer may be discontinuous and still evolving in stoichiometry, this work highlights the need for further assessment of nucleation layers and initial deposition chemistry, which may be more important than the bulk composition of the oxide itself in optimizing performance and reproducibility.

11.
Nano Lett ; 20(5): 3577-3584, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32315191

RESUMEN

Selective-area epitaxy provides a path toward high crystal quality, scalable, complex nanowire networks. These high-quality networks could be used in topological quantum computing as well as in ultrafast photodetection schemes. Control of the carrier density and mean free path in these devices is key for all of these applications. Factors that affect the mean free path include scattering by surfaces, donors, defects, and impurities. Here, we demonstrate how to reduce donor scattering in InGaAs nanowire networks by adopting a remote-doping strategy. Low-temperature magnetotransport measurements indicate weak anti-localization-a signature of strong spin-orbit interaction-across a nanowire Y-junction. This work serves as a blueprint for achieving remotely doped, ultraclean, and scalable nanowire networks for quantum technologies.

12.
ACS Nano ; 14(3): 3509-3518, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32078300

RESUMEN

Layered indium selenide (InSe) is an emerging two-dimensional semiconductor that has shown significant promise for high-performance transistors and photodetectors. The range of optoelectronic applications for InSe can potentially be broadened by forming mixed-dimensional van der Waals heterostructures with zero-dimensional molecular systems that are widely employed in organic electronics and photovoltaics. Here, we report the spatially resolved investigation of photoinduced charge separation between InSe and two molecules (C70 and C8-BTBT) using scanning tunneling microscopy combined with laser illumination. We experimentally and computationally show that InSe forms type-II and type-I heterojunctions with C70 and C8-BTBT, respectively, due to an interplay of charge transfer and dielectric screening at the interface. Laser-excited scanning tunneling spectroscopy reveals a ∼0.25 eV decrease in the energy of the lowest unoccupied molecular orbital of C70 with optical illumination. Furthermore, photoluminescence spectroscopy and Kelvin probe force microscopy indicate that electron transfer from InSe to C70 in the type-II heterojunction induces a photovoltage that quantitatively matches the observed downshift in the tunneling spectra. In contrast, no significant changes are observed upon optical illumination in the type-I heterojunction formed between InSe and C8-BTBT. Density functional theory calculations further show that, despite the weak coupling between the molecular species and InSe, the band alignment of these mixed-dimensional heterostructures strongly differs from the one suggested by the ionization potential and electronic affinities of the isolated components. Self-energy-corrected density functional theory indicates that these effects are the result of the combination of charge redistribution at the interface and heterogeneous dielectric screening of the electron-electron interactions in the heterostructure. In addition to providing specific insight for mixed-dimensional InSe-organic van der Waals heterostructures, this work establishes a general experimental methodology for studying localized charge transfer at the molecular scale that is applicable to other photoactive nanoscale systems.

13.
Acc Chem Res ; 53(4): 763-772, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-31961121

RESUMEN

ConspectusThe electronic dimensionality of a material is defined by the number of spatial degrees of confinement of its electronic wave function. Low-dimensional semiconductor nanomaterials with at least one degree of spatial confinement have optoelectronic properties that are tunable with size and environment (dielectric and chemical) and are of particular interest for optoelectronic applications such as light detection, light harvesting, and photocatalysis. By combining nanomaterials of differing dimensionalities, mixed-dimensional heterojunctions (MDHJs) exploit the desirable characteristics of their components. For example, the strong optical absorption of zero-dimensional (0D) materials combined with the high charge carrier mobilities of two-dimensional (2D) materials widens the spectral response and enhances the responsivity of mixed-dimensional photodetectors, which has implications for ultrathin, flexible optoelectronic devices. MDHJs are highly sensitive to (i) interfacial chemistry because of large surface area-to-volume ratios and (ii) electric fields, which are incompletely screened because of the ultrathin nature of MDHJs. This sensitivity presents opportunities for control of physical phenomena in MDHJs through chemical modification, optical excitation, externally applied electric fields, and other environmental parameters. Since this fast-moving research area is beginning to pose and answer fundamental questions that underlie the fundamental optoelectronic behavior of MDHJs, it is an opportune time to assess progress and suggest future directions in this field.In this Account, we first outline the characteristic properties, advantages, and challenges for low-dimensional materials, many of which arise as a result of quantum confinement effects. The optoelectronic properties and performance of MDHJs are primarily determined by dynamics of excitons and charge carriers at their interfaces, where these particles tunnel, trap, scatter, and/or recombine on the time scales of tens of femtoseconds to hundreds of nanoseconds. We discuss several photophysical phenomena that deviate from those observed in bulk heterojunctions, as well as factors that can be used to vary, probe, and ultimately control the behavior of excitons and charge carriers in MDHJ systems. We then discuss optoelectronic applications of MDHJs, namely, photodetectors, photovoltaics, and photocatalysts, and identify current performance limits compared to state-of-the-art benchmarks. Finally, we suggest strategies to extend the current understanding of dynamics in MDHJs toward the realization of stimuli-driven responses, particularly with respect to exciton delocalization, quantum emission, interfacial morphology, responsivity to external stimuli, spin selectivity, and usage of chemically reactive materials.

14.
Nanoscale ; 12(4): 2715-2725, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31950961

RESUMEN

Multi-component 3D porous structures are highly promising hierarchical materials for numerous applications. Herein we show that atomic-layer deposition (ALD) of MoS2 on graphene foams with variable pore size is a promising methodology to prepare complex 3D heterostructures to be used as electrocatalysts for the hydrogen evolution reaction (HER). The effect of MoS2 crystallinity is studied and a trade-off between the high density of defects naturally presented in amorphous MoS2 coatings and the highly crystalline phase obtained after annealing at 800 °C is established. Specifically, an optimal annealing at 500 °C is shown to yield improved catalytic performance with an overpotential of 180 mV, a low Tafel slope of 47 mV dec-1, and a high exchange current of 17 µA cm-2. The ALD deposition is highly conformal, and thus advantageous when coating 3D porous structures with small pore sizes, as required for real-world applications. This approach is enabled by conformal thin film deposition on porous structures with controlled crystallinity by tuning the annealing temperature. The results presented here therefore serve as an effective and general platform for the design of chemically and structurally tunable, binder-free, complex, lightweight, and highly efficient 3D porous heterostructures to be used for catalysis, energy storage, composite materials, sensors, water treatment, and more.

15.
ACS Appl Mater Interfaces ; 11(43): 40543-40550, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31573788

RESUMEN

The weak van der Waals bonding between monolayers in layered materials enables fabrication of heterostructures without the constraints of conventional heteroepitaxy. Although many novel heterostructures have been created by mechanical exfoliation and stacking, the direct growth of 2D chalcogenide heterostructures creates new opportunities for large-scale integration. This paper describes the epitaxial growth of layered, p-type tin sulfide (SnS) on n-type molybdenum disulfide (MoS2) by pulsed metal-organic chemical vapor deposition at 180 °C. The influence of precursor pulse and purge times on film morphology establishes growth conditions that favor layer-by-layer growth of SnS, which is critical for materials with layer-dependent electronic properties. Kelvin probe force microscopy measurements determine a built-in potential as high as 0.95 eV, and under illumination a surface photovoltage is generated, consistent with the expected Type-II band alignment for a multilayer SnS/MoS2 heterostructure. The bottom-up growth of a nonisostructural heterojunction comprising 2D semiconductors expands the combinations of materials available for scalable production of ultrathin devices with field-tunable responses.

16.
Nano Lett ; 19(7): 4448-4457, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31141672

RESUMEN

While the properties of wurtzite GaAs have been extensively studied during the past decade, little is known about the influence of the crystal polytype on ternary (In,Ga)As quantum well structures. We address this question with a unique combination of correlated, spatially resolved measurement techniques on core-shell nanowires that contain extended segments of both the zincblende and wurtzite polytypes. Cathodoluminescence hyperspectral imaging reveals a blue-shift of the quantum well emission energy by 75 ± 15 meV in the wurtzite polytype segment. Nanoprobe X-ray diffraction and atom probe tomography enable k·p calculations for the specific sample geometry to reveal two comparable contributions to this shift. First, there is a 30% drop in In mole fraction going from the zincblende to the wurtzite segment. Second, the quantum well is under compressive strain, which has a much stronger impact on the hole ground state in the wurtzite than in the zincblende segment. Our results highlight the role of the crystal structure in tuning the emission of (In,Ga)As quantum wells and pave the way to exploit the possibilities of three-dimensional band gap engineering in core-shell nanowire heterostructures. At the same time, we have demonstrated an advanced characterization toolkit for the investigation of semiconductor nanostructures.

17.
Nano Lett ; 19(6): 4052-4059, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31117759

RESUMEN

Nanomechanical resonators make exquisite force sensors due to their small footprint, low dissipation, and high frequencies. Because the lowest resolvable force is limited by ambient thermal noise, resonators are either operated at cryogenic temperatures or coupled to a high-finesse optical or microwave cavity to reach sub aN Hz-1/2 sensitivity. Here, we show that operating a monolayer WS2 nanoresonator in the strongly nonlinear regime can lead to comparable force sensitivities at room temperature. Cavity interferometry was used to transduce the nonlinear response of the nanoresonator, which was characterized by multiple pairs of 1:1 internal resonance. Some of the modes exhibited exotic line shapes due to the appearance of Hopf bifurcations, where the bifurcation frequency varied linearly with the driving force and forms the basis of the advanced sensing modality. The modality is less sensitive to the measurement bandwidth, limited only by the intrinsic frequency fluctuations, and therefore, advantageous in the detection of weak incoherent forces.

18.
Nanoscale ; 11(13): 6368-6376, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30888369

RESUMEN

Semiconducting nanowires are widely studied as building blocks for electro-optical devices; however, their limited cross-section and hence photo-response hinder the utilization of their full potential. Herein, we present an opto-electronic device for broad spectral detection ranging from the visible (VIS) to the short wavelength infra-red (SWIR) regime, using SiGe nanowires coupled to a broadband plasmonic antenna. The plasmonic amplification is obtained by deposition of a metallic nanotip at the edge of a nanowire utilizing a bottom-up synthesis technique. The metallic nanotip is positioned such that both optical plasmonic modes and electrical detection paths are coupled, resulting in a specific detectivity improvement of ∼1000 compared to conventional SiGe NWs. Detectivity and high gain are also measured in the SWIR regime owing to the special plasmonic response. Furthermore, the temporal response is improved by ∼1000. The fabrication process is simple and scalable, and it relies on low-resolution and facile fabrication steps with minimal requirements for top-down techniques.

19.
ACS Nano ; 13(3): 3730-3738, 2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30807693

RESUMEN

Strain engineering of semiconductors is used to modulate carrier mobility, tune the energy bandgap, and drive growth of self-assembled nanostructures. Understanding strain-energy relaxation mechanisms including phase transformations, dislocation nucleation and migration, and fracturing is essential to both exploit this degree of freedom and avoid degradation of carrier lifetime and mobility, particularly in prestrained electronic devices and flexible electronics that undergo large changes in strain during operation. Raman spectroscopy, high-resolution transmission electron microscopy, and electron diffraction are utilized to identify strain-energy release mechanisms of bent diamond-cubic silicon (Si) and zinc-blende GaAs nanowires, which were elastically strained to >6% at room temperature and then annealed at an elevated temperature to activate relaxation mechanisms. High-temperature annealing of bent Si-nanowires leads to the nucleation, glide, and climb of dislocations, which align themselves to form grain boundaries, thereby reducing the strain energy. Herein, Si nanowires are reported to undergo polygonization, which is the formation of polygonal-shaped grains separated by grain boundaries consisting of aligned edge dislocations. Furthermore, strain is shown to drive dopant diffusion. In contrast to the behavior of Si, GaAs nanowires release strain energy by forming nanocracks in regions of tensile strain due to the weakening of As-bonds. These insights into the relaxation behavior of highly strained crystals can inform the design of nanoelectronic devices and provide guidance on mitigating degradation.

20.
Nano Lett ; 18(12): 7876-7882, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30418785

RESUMEN

With exceptional charge carrier mobilities and a direct bandgap at most thicknesses, indium selenide (InSe) is an emerging layered semiconductor that has generated significant interest for electronic and optoelectronic applications. However, exfoliated InSe nanosheets are susceptible to rapid degradation in ambient conditions, thus limiting their technological potential. In addition to morphological changes upon ambient exposure, the mobilities and current modulation on/off ratios of InSe transistors, as well as the responsivities of InSe photodetectors, decrease by over 3 orders of magnitude within 12 h of ambient exposure. In an effort to mitigate these deleterious effects, here we present an encapsulation scheme based on seeded atomic layer deposition that provides pinhole-free growth of alumina without compromising the intrinsic electronic properties of the underlying InSe. In particular, this encapsulation provides reproducible InSe field-effect transistor characteristics and InSe photodetector responsivities in excess of 107 A/W following ambient exposure for time periods on the order of months. Because atomic layer deposition is a highly scalable and manufacturable process, this work will accelerate ongoing efforts to integrate InSe nanosheets into electronic and optoelectronic technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...